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Abstract 
Recent tools that analyze microarray expression data have exploited correlation-based approaches 
such as clustering analysis.  We describe a new method for assessing the importance of genes for 
sample classification based on expression data.  Our approach combines a genetic algorithm (GA) 
and the k-nearest neighbor (KNN) method to identify genes that jointly can discriminate between 
two types of samples (e.g. normal vs. tumor).  First, many such subsets of differentially expressed 
genes are obtained independently using the GA.  Then, the overall frequency with which genes 
were selected is used to deduce the relative importance of genes for sample classification.  Sample 
heterogeneity is accommodated; that is, the method should be robust against the existence of 
distinct subtypes.  We applied GA/KNN to expression data from normal versus tumor tissue from 
human colon.  Two distinct clusters were observed when the 50 most frequently selected genes 
were used to classify all of the samples in the data sets studied and the majority of samples were 
classified correctly.  Identification of a set of differentially expressed genes could aid in tumor 
diagnosis and could also serve to identify disease subtypes that may benefit from distinct clinical 
approaches to treatment. 
 

Introduction 
Recent advances in microarray technology have made it possible to study the expression patterns of 
thousands of genes in parallel (for reviews see refs 1-4).  Microarrays have become valuable tools for 
studying the gene expression patterns of normal and diseased tissues [5-7] the genome-wide patterns of gene 
expression of microorganisms under different conditions [8,9], changes in gene expression patterns of cells 
in response to environmental and genotypic changes [10], and changes in gene expression patterns of cells as 
a function of time [11].  For instance, Alon et al. [6] used oligonucleotide arrays to study the expression 
patterns of tumor and normal colon tissue samples.  In their studies, the gene expression patterns of 40 colon 
tumor tissue samples and 22 normal colon tissue samples were analyzed with an Affymetrix oligonucleotide 
array [4] complementary to more than 6,500 human genes and expressed sequence tags (ESTs).  Gene 
correlation with tissue classification as well as discrimination between normal and tumor tissue samples was 
obtained using a cluster analysis. 

While high-throughput technology has significantly accelerated the rate at which biological 
information is acquired, tools that can successfully mine the resulting large data sets are needed.  Currently, 
the methods commonly applied to microarray data analysis have been correlation-based approaches such as 
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cluster analysis [6,12].  Cluster analysis groups genes that are similar in patterns of expression.  Clustered 
genes are likely to be functionally linked.  Likewise, this approach provides valuable information about gene 
interactions and gene relationships, from which the functions of specific genes and their cellular locations 
and roles in specific pathways may be suggested [13,14].  Although correlation-based approaches have been 
widely applied in analyzing the patterns of gene expression, they may not fully extract the information from 
data corrupted by high-dimensional noise.  This is important because samples may be incorrectly classified 
if the noise from the genes that are irrelevant is not sufficiently reduced. 

Methods for selecting informative genes for sample classification have been recently proposed 
[15,16].  Golub et al. [15] developed a neighborhood analysis approach to obtain a subset of genes that 
discriminate between the acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).  Genes 
whose expression levels differ significantly in ALL and AML were identified.  These genes were 
subsequently used to predict the class membership of new leukemia cases.  Recently, Ben-Dor et al. [16] 
applied a boosting technique [17] to search for a threshold (expression level) for each gene that would 
maximally distinguish between two types of samples.  Those that gave the smallest classification errors were 
taken as the relevant genes.  Essentially, both approaches [15,16] are univariate approaches, that is, samples 
were compared in each single gene dimension.  It is not clear that reduction of the gene dimensions from 
thousands to one retains the essential information necessary for sample distinction.  In addition, both 
methods implicitly assume that the relevant genes are similarly expressed among samples of each type (e.g. 
tumors).  This could be problematic when subtypes exist so that the relevant genes are not uniformly 
expressed.   

Herein we present a multivariate approach that compares samples in a multi-gene dimension using a 
nonparametric pattern recognition approach, the k-nearest neighbor method (KNN) [18].  A sample is 
classified based on the class membership of its nearest neighbors in the gene space.  The dimensionality of 
the gene subspace is arbitrarily set to 50.  Intuitively, samples (objects) become more distinct (dissimilar) 
when more genes are compared.  On the other hand, too many dimensions may contribute noise to the 
system.  In addition, the calculation becomes computationally expensive as the number of dimensions 
(genes) increases.  A 50-dimension gene subspace is a reasonable compromise.   

We began by using the “genetic algorithm” to select many subsets of 50 genes that can potentially 
discriminate between tumor and normal tissue samples in the Alon et al. data set [6].  When a large number 
of such subsets of genes were obtained, the frequency with which genes were selected was assessed through 
statistical analysis.  The selection frequency should correlate with the relative predictive importance of genes 
for sample classification: the most frequently selected genes should be jointly discriminative, and therefore 
should include genes that are differentially expressed.  The most frequently selected genes could 
subsequently be used to classify new samples; that is, potentially be used for tumor diagnosis.   

Comparing all subsets of genes is not a feasible approach.  For instance, the number of ways to 
select 50 genes from 2000 is approximately 10100.  It is not possible to examine all the combinations directly.  
An efficient method is needed to sample from fewer combinations to find the optimal or near optimal 
solutions. Although many optimization methods may be in principle appropriate for this task, genetic 
algorithms (GAs) provide a general purpose, stochastic search methodology.  GA has been used in a variety 
of combinatorial problems involving high dimensional spaces [19,20].  In this study, we applied GA in 
combination with the KNN method to identify the many subsets of genes that can discriminate tumor from 
normal tissue samples.  We tested our method on the data set of Alon et al. [6].  In the data set, there are 62 
colon tissue samples (40 tumor and 22 normal), of which each contains the expression levels of 2,000 
genes/ESTs. 

 
Methods 

Data set.  The original gene expression data were downloaded from the web.  The data contain the 
expression levels of 2000 genes across the 62 samples, of which 40 are tumor tissue and 22 normal tissue 
[6].  The data had previously been filtered from oligonucleotide microarray studies of the expression levels 
of 3200 full-length human cDNA and 3,400 ESTs that have some similarity to other eukaryotic genes using 
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Affymetrix Oligonucleotide Arrays [4].  The data set was divided into a training set (the first 42 samples) 
and a test set (20 samples).  The numbers of tumor and normal tissue samples are 28 and 14 in the training 
set and 12 and 8 in the test set, respectively.  This 2-to-1 split reflects the more complex role played by the 
training set in selecting the genes from the 2000. 
 
K-nearest neighbors (KNN).  In the KNN method [18], one computes the distance between a sample, 
represented by its pattern vector Vm, and each of the pattern vectors of the training set:  
 
Vm = (g1m,… gim,…, gnm), where n is the number of genes in the vector (set to 50 arbitrarily); gim is the 
expression level (log10 transformed) of the ith gene in the mth sample; m = 1,..,M.  
 

Each sample is classified according to the class membership of its k nearest neighbors (provided 
they agree), as determined by the Euclidean distance in 50-dimensional space.  If the k nearest neighbors are 
not of the same class, the sample is considered unclassifiable.  Small values of 3 or 5 have been alleged to 
provide good classification [18].  We arbitrarily set k to be 3, large enough to form tight clusters even if 
there are subtypes and the sample size is limited.  A larger k would allow less flexibility in detecting 
subclusters and also increase required computing time.  Unlike the classic KNN for which class membership 
is determined by majority vote of the k-nearest neighbors [18], we require a unanimous decision.  If all of 
the k-nearest neighbors of a sample are tumors, the sample is classified as tumor and conversely.  A sample 
remains unclassified if its three nearest neighbors are not of the same class.   

 
Genetic algorithm (GA).  GA, first described by John Holland [21], mimics natural evolution and selection.  
In biological systems, genetic information that determines the individuality of an organism is stored in 
chromosomes.  Chromosomes are replicated and passed onto the next generation with selection depending 
on fitness.  Genetic information can, however, also be altered through genetic operations such as mutation 
and crossover.  In GAs, each “chromosome” is a set of genes, which constitutes a candidate solution to the 
discrimination problem.  A population of “chromosomes” is used.  The passage of each “chromosome” to 
the next generation is determined by its relative fitness, i.e. the closeness of its properties to those desired.  
Random combinations and/or changes of the transmitted “chromosomes” produce variations in the next 
generation of “offspring”.  The better the fitness (correspondence with desired properties), the greater the 
chance of being selected for transmission.  Through evolution through many generations, optimal or near 
optimal solutions are obtained.  There are four major components of GA: chromosome, fitness, selection, 
and mutation. 

In this study, a GA was used to identify 50 genes that can correctly classify all of the training set 
samples.  For some applications a less strict criterion may be preferred, e.g. allowing one or two 
misclassifications.  A schematic diagram of the GA/KNN procedure is shown in Fig. (1). 
 
chromosomes 

Each “chromosome” consisted of 50 selected genes.  Initially, a diverse set of chromosomes (called 
a “population”) was generated.  Each chromosome was generated by randomly selecting 50 distinct genes 
from the 2,000 gene pool.  Multiple populations were generated, called sub-populations or “niches” in GA.  
For a typical run, 10 niches were separately evolved where each contained 150 chromosomes.  Each niche 
evolves independently, except that at each generation, the best chromosomes identified, one from each 
niche, were combined and used to replace the 10 least fit chromosomes in each niche in the next generation 
(Fig. 1).  This strategy preserves the best chromosomes at each generation and also shortens the search time 
[22]. 
 
fitness function 

For each selected set of 50 genes (a chromosome), the class memberships of the three nearest 
(training set) neighbors were compared to that of each particular sample.  If all 4 class memberships agreed, 
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a score of 1 was assigned to the particular sample.  These scores were summed across samples to assess the 
goodness of classification of each particular set of 50 genes, forming a sum we refer to as R2.  The maximum 
R2 thus corresponds to the total number of samples in the training set, and R2/M gives the proportion 
correctly classified, where M is the number of samples in training.  Each chromosome in the population was 
assigned a fitness score based on its ability to classify the samples in the training set based on R2, as defined 
above. 
 
selection 

If the initial population of chromosomes does not include any that achieve the maximal R2, a new set 
of chromosomes is generated to form a second generation.  Selection of chromosomes for the next 
generation is based on the survival-of-the-fittest principle.  The single best chromosome from each niche is 
entered into the respective subsequent niche deterministically and the remaining 149 positions are filled 
based on the fitness values (probabilistically).  
 
 mutation 

Mutation is employed to enhance evolvability by introducing new genes into the chromosomes.  
Each chromosome was selected from the parent niche according to a probability proportional to its fitness 
rank.  Once a chromosome is chosen for transmission, between 1 and 5 of its genes are randomly selected 
for mutation.  The number of mutations is assigned randomly, with probabilities, 0.53125, 0.25, 0.125, 
0.0625, and 0.03125 respectively.  In this way, a single replacement is given the highest probability while 
simultaneous multiple replacement has low probability.  This strategy prevents the search from behaving as 
a random walk as it would if many new genes were introduced at each generation.  Once the number of 
genes in the chromosome to be replaced has been determined, these genes are randomly selected and 
replaced randomly from the genes not already in the chromosome. 

The above procedure was repeated until a maximum in the cross-validation R2 (i.e. M) was found in 
any of the 10 niche runs (typically, in 10-50 generations).  The selected chromosome was saved.  The whole 
population was independently regenerated for each niche and the process was repeated.  The process was 
terminated when an arbitrary large number of chromosomes of genes were obtained.  The number of selected 
chromosomes was 6,348 for the colon data.   
 
Principal component (PC) analysis.  For visualization, a principal component (PC) analysis [23] was 
applied to the variance-covariance matrix of the data (62 samples, log10 transformed) using the method of 
single value decomposition (SVD) from Numerical Recipes (Cambridge, MA) to extract the eigenvalues.  
The principal components were obtained by projecting the original data points (log10 transformed) onto the 
eigenvectors.  
 

Results 
A total of 6,348 subsets of 50 genes that potentially discriminate between the normal and tumor samples 
were obtained based on the training set samples.  The frequency with which genes were selected was then 
analyzed.  The 50 most frequently selected genes were subsequently used to classify samples in the test set. 
 
Gene Selection 
The statistical z-score with which each of the 2,000 genes was chosen from the 6,348 solutions is shown in 
Fig. (2).  To determine if GA has adequately sampled the solution space, the 6,348 solutions were divided 
into two equal-size groups and their frequency distributions were compared.  Nearly identical patterns were 
observed.  Invariably, several genes were being selected more frequently than others while a few were never 
selected.  The statistical significance analysis (Fig. 2) indicates that selection is not random. 

Although many genes were selected with significantly high z-scores, only the 50 most frequently 
selected genes are listed in Table 1.  The complete list of the 2,000 genes based on frequency rank is 
available (http://dir.niehs.nih.gov/microarray/datamining/).   
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The human monocyte-derived neutrophil-activating protein (MONAP) gene was most frequently 
selected.  This gene is significantly up-regulated in the tumor tissue samples compared to the normal tissue 
samples (Student t-test [24], P < 0.0001).  Recent studies have demonstrated that the expression level of 
MONAP, also called interleukin-8 (IL-8), directly correlates with the progression of several human cancers 
[25,26].  It is believed that over-expression of IL-8 may play an important role in tumor angiogenesis and 
aggression [25,26]. 

Among the top 50 genes, 5 are antigen or antigen-related genes.  These genes are the T-cell acute 
lymphoblastic leukemia associated antigen 1, HLA class II histocompatibility antigen γ chain precursor (H. 
sapiens), LCA-homolog - LAR protein (leukocyte antigen related), transmembrane carcinoembryonic 
antigen BGPa (formerly TM1-CEA) and transmembrane carcinoembryonic antigen BGPC (formerly TM3-
CEA).  Another antigen gene, which nearly made the top 50 list, is the leukocyte antigen CD37 (H. sapiens) 
(rank no. 51).   

Several putative tumor suppressor genes were also among the top 50 genes (Table 1).  They are 
human MXI1 (MAX-interacting protein 1), gelsolin precursor, p-cadherin, and tropomyosin.  All except p-
cadherin were significantly down-regulated in tumors compared to normal samples.  MXI1 is believed to be 
a member of the MYC family of transcription factors that negatively regulates MYC function [27].  
Correlation between MXI1 genetic instability and tumors has been reported [28,29]. Gelsolin is an actin 
filament regulatory protein that plays an important role in maintaining the integrity of cell cytoskeleton [30].  
It has been suggested as a tumor suppressor because its expression is evidently reduced or lost in several 
tumors including breast [31], ovarian adenocarcinomas [32], and prostate [33].  P-cadherin belongs to a 
family of cell-cell adhesion molecules that are essential to embryonic development, maintenance of tissue 
integrity and tumourigenesis [34].  Among the four putative suppressor genes we selected, it was the only 
one that was highly expressed in tumors compared to normal samples.  Over-expression of p-cadherin in 
breast carcinoma has been strongly associated with poor survival prognosis [35].  Tropomyosin is another 
suppressor protein that suppresses cell malignant transformation [36].  In addition, the vasoactive intestinal 
peptide (VIP) gene was also frequently selected.  It has been shown that VIP inhibits the proliferation of 
human colonic cancer cells line HT29 [37] and other cancer cell lines [38].  Thus, it is not surprising that the 
VIP gene was substantially down-regulated in the tumor tissue samples compared to the normal tissue 
samples.  Several cell adhesion and skeletal related genes were also frequently selected.  

Among the 2,000 genes, 12 were controls, labeled as HSAC07, UMGAP and I.  One would expect 
these genes not to be frequently selected.  In fact, four (labeled as I) are among the 9 genes that were never 
selected in 6,348 solutions.  The other 8 were selected with frequencies near random (from 0.015 to 0.046).  
Multiple copies of genes on the chip provide another kind of control, and these multiples were selected with 
similar frequencies (data not shown). 
 
Validation 
To test the predictive strength of our selected 50 genes on a test set of specimens, each of the 20 test set 
samples was classified according to the class memberships of its three nearest training set neighbors using 
the most frequently selected genes (Table 2).  When only the top most gene was used to classify the test set 
samples, 7 were incorrectly classified while 2 remained unclassifiable.  It appears that the prediction 
stabilizes when as few as 25 and up to 110 top genes are used.  When up to 120 top genes were used, a 
similar result was obtained except that T30 became unclassifiable.  As more genes were included, 
contaminating the system with high-dimensional noise, the number of unclassifiable samples increased.  In 
fact, when all 2,000 genes were used, 8 out 20 samples became unclassifiable.  This result emphasizes that 
not all expression data are relevant to the discrimination between the normal and tumor samples.  For those 
that were classified, two normals (N34 and N36) and three tumors (T30, T33, and T36) were incorrect.  In 
all cases, the two normal samples N34 and N36 were again classified as tumors.  As expected, the least 
frequently selected 100 genes were unable to discriminate between tumor and normal samples (Table 2).   

 
Data Display 
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Principal component (PC) analysis [23] is a statistical method, often called eigenvector analysis, eigenvector 
decomposition or Karhunen-Loeve expansion.  In PC, most of the variation in data is summarized by 
projection onto a few orthogonal principal components.  More specifically, the first PC is the major axis for 
the “shape” of the data points.  Hence, the first few PCs explain most of the variance in the data.  A plot of 
the first two PCs often reveals patterns in the data.  Here it was used to project samples of high dimensions 
onto a two-dimension plot for visual display.  Other display or post processing techniques such as the cluster 
analysis [6,12] could be used (Fig. 3). 

We applied PC analysis to all of the 62 samples in the 2000-dimensional gene space.  Several PC 
were obtained.  The first two PCs represent approximately 60% of the variance of the data set.  Noticeably, 
no separation between tumor and normal samples is apparent (Fig. 4a).  In contrast, two distinct clusters 
emerge when only the 50 most frequently selected genes are used (Fig. 4b).  A similar pattern was observed 
when the 100 or 200 most frequently selected genes were used (data not shown).  Again, two normal 
samples (N34 and N36) were in the cluster of tumors while three tumor samples (T30, T33 and T36) were 
among the normal samples.  Clustering analysis using all 2000 genes showed that N34 is positional among a 
cluster of tumors while N36 is adjacent to one tumor (T2) in the cluster diagram [6].  All the three tumor 
samples (T30, T33 and T36) are in the cluster of normal samples in the cluster diagram [6].  Thus, results 
based on GA/KNN (with or without subsequent PC analysis) are consistent with some of those provided by 
cluster analysis.  Together, the results suggest that samples T30, T33, N34, N36, and T36, but especially the 
latter four are anomalies.  Communication with Dr. Uri Alon, the first author of reference 6, sheds some 
light on the question.  Here we quote “It appears that tissue samples are heterogeneous, that is, they have a 
mixture of epithelial cells (which are the cancerous cells in the case of tumor samples) and other tissues such 
as muscle cells which are not cancerous.  Therefore, it is plausible that much of the tumor/normal 
classification found by clustering is actually due to differences in the fraction of epithelial cells in the 
sample.  When one makes a crude estimate of the amount of, say, muscle cells in each sample by taking the 
average intensity of ‘muscle genes’, one sees that the tumor samples contain less muscle than the normal 
samples.  The exceptions to this are precisely the outliers; they seem to have a different ratio of tissue 
compositions.  The 3 tumors have a high muscle content, and the 2 normals have a low muscle content”.  
This suggests that sample contamination can distort the classification process. 

 
As expected, no distinctive clusters were observed when PC analysis was applied to 50 randomly 

selected genes (Fig. 4c) or the 100 least frequently selected genes (Fig. 4d).  
 

Discussion 
Method development for analyzing gene expression data is still in its infancy.  Nonetheless, different 
approaches are emerging [6,12,15,16,39-41].  Recently, Ben-Dor et al. [16] applied several methods to 
sample classification including support vector machines (SVM) [42].  In SVMs, one seeks a hyperplane that 
can separate two groups of points (e.g. normal vs. tumor samples) and maximizes the minimum distance of 
the closest points to the hyperplane.  SVM has also been applied to gene classification [39].  While most 
methods utilize all the expression data (after filtration) in the analysis, methods that use a subset of relevant 
genes have been reported [15,16].  For instance, Golub et al. [15] applied neighborhood analysis to identify 
a subset of genes that discriminate between the two types of leukemia AML and ALL, using a separation 
measure similar to the t-statistic.  The 50 genes that best distinguish AML from ALL using 38 training set 
samples were taken as the informative genes.  Subsequent classification using 50 informative genes correctly 
predicted 29 of 34 test set samples with high confidence.  Ben-Dor et al. [16] also applied a boosting 
technique [17] to search for a threshold (expression level) for each gene that would maximally discriminate 
between two types of samples.  Those that gave the smallest classification errors were taken as the relevant 
genes.  The method was applied to the same colon data set (we have used) and an ovarian set.  All samples 
were used to obtain the relevant genes using the leave-one-out cross-validation procedure as a measure of 
prediction strength (no test set was used).  Although differing in technical details, both approaches (Golub et 
al. [15] and Ben-Dor et al. [16]) examine one gene at a time (univariate).  Furthermore, both approaches 
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[15,16] implicitly assume that genes are similarly expressed within each type of samples.  This could be 
problematic when subtypes exist so that the relevant genes are not uniformly expressed in the group.  On the 
other hand, the GA/KNN approach is a multivariate approach (samples are compared in multi-gene 
dimensions).  A sample is classified based on the class memberships of its nearest neighbors.  Therefore, 
subclusters among samples of a given class are accommodated.  We found that with the colon data no single 
gene was capable of discriminating between all the normal and tumor samples (using KNN, k = 3 and 
consensus rule) while many subsets of combinations of genes can do this. This observation was also borne 
out for other array data that we analyzed including leukemia (http://www.genome.wi.mit.edu/MPR) and 
lymphoma data (http://llmpp.nih.gov/lymphoma).   

We have found that combinations of genes, rather than individual dominant genes, can be most 
discriminating for sample classification.  It appears that the discriminative effect of certain genes is 
synergistic.  For instance, the frequency of co-occurrence of three genes (PABC) p145TRK-B (A), 
Tropomyosin (B), and Metallothionein-II (C), is approximately 6 times higher than would be predicted 
based on their individual frequencies (PA×PB×PC).  Many such examples exist.  The GA/KNN method, by 
selecting sets of genes based on their joint ability to discriminate, can in theory identify genes that are 
important jointly, but which would not appear to discriminate individually.  For example, 3 genes that we 
highly selected (Glucocorticoid receptor, p145TRK, and 60S acid ribosomal protein P2) each had a t-
statistic that was unimpressive (1.38, 0.44, and 1.53, respectively).  Thus these would not have been selected 
by previous methods[15,16].  However, their joint rate of selection with GA/KNN was 4.5 times what would 
have been predicted based on their individual rates, suggesting that what we are detecting is their joint 
ability to discriminate.  Another reason for selection of a gene with a t-statistic near 0 is that the GA/KNN 
method is inherently multivariate, and can select groups of genes that together are informative, but which 
marginally (one at a time) are not. 

The marginal contribution of each gene in differentiating normal from tumor samples could be 
evaluated using the Student's t-statistic [24].  It is noteworthy that among the 50 most frequently selected 
genes there is no strong correlation between the magnitude of the t-statistic and the frequency of gene 
selection (Table 1).  Although genes with a large t-statistic would be discriminative, genes with small 
magnitude t-statistic could also be discriminative.  One reason is that samples within a class can be 
heterogeneous [43].  For instance, certain genes could be highly differentially expressed in one tumor 
subtype but not in the another.  Such genes, which could well be informative, may not be identified using the 
t-statistic as the selection criterion, since the t-statistic would be small.  In fact, the correlation between the 
frequency of gene selection and the absolute value of the t-statistic for the 50 most frequently selected genes 
is only 0.5.  

For a comparison, we have applied the GA/KNN method to the leukemia data set [15].  
Interestingly, for the same training set (38 specimens) used by Golub et al. [15], a different set of top 50 
genes was selected using the GA/KNN method (multivariate) than those obtained by Golub et al. using the 
neighborhood analysis approach (univariate) [15].  Among the top 50 genes, we find that 18 and 32 genes 
were more highly expressed in the acute myeloid leukemia (AML) and acute lymphoblastic leukemia 
(ALL), respectively.  In contrast, Golub et al. chose to report an equal number of more highly expressed 
genes in ALL and AML.  When each specimen in the test set was classified according to the class 
memberships of its three nearest training set neighbors based on 50 genes that were selected using GA/KNN, 
34 specimens were correctly classified with only one exception (AML66) (using KNN, k = 3 and consensus 
rule).  Thus, the GA/KNN method correctly classified 33 of the 34 test samples.  When classified using the 
class membership of up to 5 nearest neighbors using consensus rule (a more strict criterion), a similar result 
was obtained except that one specimen (AML54) became unclassifiable.  Similarly, when the test set was 
combined with the training set, postprocessing cluster analysis of the top 50 genes using a cluster analysis 
program [12] showed that the AML samples and ALL samples were clustered together correctly except 
AML66 (Fig. 5).  Furthermore, the top 50 genes found by the GA/KNN method revealed the existence of 
two subtypes within ALL without applying any prior knowledge.  Among the 47 ALL samples, 9 were T-
cell ALL (ALL2, ALL3, ALL6, ALL9, ALL10, ALL11, ALL14, ALL23, and ALL67), and the remaining 
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B-cell ALL.  When clustered using the top 50 genes, all of the 9 T-cell ALL specimens were on one branch 
of the ALL tree together with two B-cell ALL (Fig. 5).  This indicates that the GA/KNN method is capable 
of identifying genes that not only discriminate between the ALL and AML but may also unmask clinically 
meaningful subtypes, through subsequent cluster analysis.  

In conclusion, we have described a method that selects a subset of genes that can discriminate 
between normal and tumor tissue samples based on microarray data.  Once such a set of relevant genes has 
been identified, an unknown sample can be classified by comparing its expression profile with that of the 
known samples.  In addition to this clinical application, the method could be applied to experimental 
settings, e.g. to characterize cellular responses to a toxic exposure.  In principle, the method could be 
extended to toxicologic dose-response studies, to the assessment of time dependent responses, or to clinical 
diagnostic problems when there are more than two states.  The method can be applied in a stand-alone 
fashion, or used as a preprocessor to cluster analysis.  Our results are encouraging, with the caveat that the 
number of genes and the sample size used in the original expression studies are limited. 
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KNN
1). calculate pair-wise Euclidean distances for all pairs 
     of samples with respect to each chromosome.
2). find k nearest neighbors (k=3) for each sample.
3). assign class membership (1-tumor, 0-normal, 
     2-unclassifiable) based on neighbors.
4). calculate fitness (the number of samples correctly 
     classified).

Selection
1). the best one deterministic.
2). the remaining probabilistic.

Mutation
1). which chromosome?
2). how many genes?
3). which genes?

1 12 12088 99 45

33 21 56556 11 45

...

...

...

all samples correctly predicted?

yes

no

1). get the best chromosome from 
     each niche.
2). replace the least fit chromosomes 
     with the best chormosomes for 
     each niche.

Niche 1

initial population

save the chromosome for statistic analysis.



Figure 1.  A schematic diagram of the GA/KNN procedure.  Multiple sub-populations 
(niches) were performed.  Only one niche is shown.  At each generation, the single best 
chromosome found from each niche run was identified.  The best chromosomes 
identified, one from each niche, were combined and used to replace the 10 least fit 
chromosomes in each niche in the next generation. 
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Figure 2.  The statistical z-score with which each of the 2,000 genes was selected among the 
6,348 solutions.  Let, Z = [Si-E(Si)]/σ, where Si is the number of times genei was selected, E(Si), 
is the expected number of times genei was selected, σ is the square root of the variance.  Let, A = 
6,348, P(genei) =  0.025, the probability of genei being selected (if random).  Then, E(Si) = 
P(genei)·A, and σ = √ {P(genei)·[1-P(genei)]·A}.  The statistical significance P(Z>z) for z-scores 
of 5.0 and 30.0 are approximately 3.0·10-7 and 8.0·10-198, respectively. 





Figure 3.  Hierarchical clustering [12] of gene expression data for the colon data using 
the top 50 genes. 
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Figure 4.  Plot of the first versus the second principal component. a, using the expression levels 
(log10 transformed) of all 2,000 genes. b, using the 50 most frequently selected genes. c, using the 
50 randomly selected genes. d, using the 100 least frequently selected genes. 





Figure 5.  Hierarchical clustering [12] of gene expression data for the leukemia data using the top 
50 genes.  The original data were downloaded from the web 
(http://www.genome.wi.mit.edu/MPR). The data set contained a training set (38 specimens) and a 
test set (34 specimens).  The data set were log10 transformed.  Only the training set samples were 
used to obtain 10,000 subsets of 50 genes that discriminate the acute myeloid leukemia (AML) 
and acute lymphoblastic leukemia (ALL).  A subset of 50 genes was considered discriminative 
when 37 of the 38 specimens in the training set were correctly classified by the GA/KNN.  The 
frequency of gene selection was subsequently analyzed.  The 50 most frequently selected genes 
were used to cluster all the specimens (training and test) and are showed here.  It can be seen that 
all ALL and AML specimens were clustered together separately with only one exception 
(AML66).  Thus, the GA/KNN method correctly classified 33 of the 34 test samples.  
Furthermore, it seems that the top 50 genes obtained by the GA/KNN method revealed the two 
subtypes within ALL without applying any prior knowledge.  Among the 47 ALL samples, 9 
(ALL2, ALL3, ALL6, ALL9, ALL10, ALL11, ALL14, ALL23, and ALL67) were T-cell ALL 
and the remaining B-cell ALL.  It appears that all of the 9 T-cell ALL samples were on one 
branch of the ALL tree together with two B-cell ALL. 
 

http://www.genome.wi.mit.edu/MPR)


Table 1 • The 50 most frequently selected genesa 
   

Gene 
Number 
 

Student’s  
t-statisticb 

 

 
Name 

 
   
M26383   7.21 Human monocyte-derived neutrophil-activating protein (MONAP) 
H43887  -5.08 Complement factor D precursor 
J05032   6.77 Human aspartyl-tRNA synthetase alpha-2 subunit 
L07648  -1.96 Human MXI1 
R36977   5.46 P03001 transcription factor IIIA 
L12350   2.62 Thrombospondin 2 precursor 
M80815  

  

 -5.40 H. sapiens a-L-fucosidase gene, exon 7 and 8 
D13665   2.91 Human mRNA for osteoblast specific factor 2 (OSF-2p1) 
U36621   1.40 Human Y-chromosome RNA recognition motif protein (YRRM) 
H06524  -3.16 Gelsolin precursor, plasma 
R44301  -3.89 Mineralocorticoid receptor 
M94132  -3.01 Human mucin 2 (MUC2) 
D29808  -4.18 Human T-cell acute lymphoblastic leukemia associated antigen 1 
U22055   4.04 Human 100 kDa coactivator 
T54303  -2.12 Keratin, type II cytoskeletal 8 
X06700   2.33 Human 3' region for pro-alpha1(III) collagen 
U14631  -2.58 Human 11 beta-hydroxysteroid dehydrogenase type II 
T51571   4.79 P24480 calgizzarin 
H08393   4.71 Collagen alpha 2(XI) chain 
H24310   1.38 Glucocorticoid receptor, beta 
M36634  -4.65 Human vasoactive intestinal peptide (VIP) 
U12140   0.44 Human tyrosine kinase receptor p145TRK-B (TRK-B) 
X86693  -3.75 H. sapiens mRNA for hevin like protein 
M31627   1.83 X box binding protein-1 
L41559   4.37 H. sapiens pterin-4a-carbinolamine dehydratase (PCBD) 



R75893   1.20 Probable G protein-coupled receptor 6H1 from T-cells 
H79852   1.53 60S acid ribosomal protein P2 
X63629   4.74 H. sapiens mRNA for p cadherin 
R34698   4.36 Interferon-inducible protein 9-27 
L11706   2.97 Human hormone-sensitive lipase (LIPE) gene 
X75208   3.06 H. sapiens HEK2 mRNA for protein tyrosine kinase receptor 
X07767  

  

  

 -1.38 Human cAMP-dependent protein kinase catalytic subunit type α 
T90280   3.78 Ribophorin II precursor 
H26965   0.18 HLA class II histocompatibility antigen, gamma chain precursor 
T92451  -3.96 Tropomyosin, fibroblast and epithelial muscle-type 
M85079   2.00 Human TGF-beta type II receptor 
T94350  -2.67 Peripheral myelin protein 22 
T51023   5.28 Heat shock protein HSP 90-beta 
L05144  -3.22 Phosphoenolpyruvate carboxykinase, cytosolic 
X82103   2.59 H. sapiens mRNA for beta-COP 
U17899   4.16 Human chloride channel regulatory protein 
U21090   4.30 Human DNA polymerase delta small subunit 
Y00815  -0.01 Human LCA-homolog. LAR protein (leukocyte antigen related) 
R33367   3.78 Membrane cofactor protein precursor 
M12272  -1.08 H. sapiens alcohol dehydrogenase class I γ subunit (ADH3) 
X57351   3.75 Interferon-inducible protein 1-8D 
X16354  -2.35 transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA) 
X16356  -3.21 transmembrane carcinoembryonic antigen BGPC (formerly TM3-CEA) 
T51858   3.69 Eukaryotic initiation factor 4B 
R06601
 

 -1.43
 

Metallothionein-II 
 

aThe genes are listed in descending order based on the rank frequency obtained using the training set samples (see text for details).  A 
complete list of the 2,000 genes is available on http://dir.niehs.nih.gov/microarray/datamining/. 
bStudent’s two-sample t-test was performed on log10 transformed data of the 42 training set samples.  A positive value indicates that 
the gene is up regulated in tumors compared to normal samples and conversely.  The t-values at which P is 0.1, 0.01, and 0.001 are 
1.684, 2.704, and 3.551, respectively. 



Table 2 • Classification of the test set samplesa 
          

Sample
 

        

          

Exp.b Top 1c Top 5c Top 25c Top 50c Top 100c Top 500c 
 

All 2000 
 

The least 100c 
       

N29 0         
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

          

1 0 0 0 0 2 2 2
N32 0 0 0 0 0 0 0 2 2
N33 0 1 1 0 0 0 0 0 2
N34 0 1 1 1 1 1 1 1 2
N35 0 1 2 0 0 0 0 2 2
N36 0 1 1 1 1 1 1 1 2
N39 0 1 0 0 0 0 0 0 2
N40 0 1 1 0 0 0 0 2 2
T29 1 1 1 1 1 1 1 1 2
T30 1 2 2 0 0 0 2 1 1
T31 1 1 1 1 1 1 1 1 1
T32 1 1 1 1 1 1 1 1 1
T33 1 2 0 0 0 0 2 2 2
T34 1 1 1 1 1 1 1 2 2
T35 1 1 1 1 1 1 1 1 1
T36 1 1 1 0 0 0 0 2 2
T37 1 1 1 1 1 1 2 2 2
T38 1 1 1 1 1 1 1 1 1
T39 1 1 1 1 1 1 1 1 2
T40 1 1 1 1 1 1 1 1 2

aA sample is classified as 0-normal, 1-tumor, or 2-unclassifiable.  See text for details. 
bFrom ref 6. 
cClassification using the top most and bottom least frequently selected genes. 
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