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New strategies for identifying chemical carcinogens and assess-
ing risk have been proposed based on the Tg.AC (zetaglobin
promoted v-Ha-ras) transgenic mouse. Preliminary studies suggest
that the Tg.AC mouse bioassay may be an effective means of
quickly evaluating the carcinogenic potential of a test agent. The
skin of the Tg.AC mouse is genetically initiated, and the induction
of epidermal papillomas in response to dermal or oral exposure to
a chemical agent acts as a reporter phenotype of the activity of the
test chemical. In Tg.AC mouse bioassays, the test agent is typically
applied topically for up to 26 weeks, and the number of papillomas
in the treated area is counted weekly. Statistical analyses are
complicated by within-animal and serial dependency in the pap-
illoma counts, survival differences between animals, and missing
data. In this paper, we describe a statistical model for the analysis
of skin tumor data from a Tg.AC mouse bioassay. The model
separates effects on papilloma latency and multiplicity and ac-
commodates important features of the data, including variability
in expression of the transgene and dependency in the tumor
counts. Methods are described for carcinogenicity testing and risk
assessment. We illustrate our approach using data from a study of
the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure
on tumorigenesis.

Key Words: carcinogenicity; dose-response; drug safety; histor-
ical controls; papilloma; risk assessment; skin-painting study;
transgenic mouse; tumorigenesis.

cals are developed each year that potentially modify the risk of
cancer in humans. Conventional 2-year rodent bioassays are
expensive and time consuming to conduct. Test systems that
utilize animals susceptible to carcinogens do not require as
many animals and can evaluate chemicals within shorter peri-
ods. Also, genetically altered mice that incorporate human
protooncogenes may be better animal surrogates for human
cancer than the wild-type rodents used in conventional studies
(Contrera and DeGeorge, 1998). Transgenic mice have been
developed that emplosas oncogenes that are known to func-
tion in both human and animal cancers (Led¢ral., 1990;
Yamamotoet al., 1996).

Preliminary studies suggest that the Tg.AC mouse, which
carries an activated v-Has oncogene, may be a good model
for rapid carcinogen identification (Spaldiegal.,1999; Ten-
nantet al., 1995, 1996). The Tg.AC mouse has genetically
initiated skin, and the epidermal cells serve as targets for
tumorigenesis. Although the incidence of spontaneous papillo-
mas is very low, both genotoxic and non-genotoxic carcino-
gens can cause prompt epithelial proliferation and papilloma
formation (Spaldinget al., 1993). Thus, unlike the conven-
tional bioassay, in which the majority of tumors are occult and
are not detectable until necropsy, the primary observation in
Tg.AC mouse bioassays consists of weekly counts of the
number of detectable skin papillomas.

The current standard for statistical analysis of skin papilloma

Genetically altered mice are widely used in studying mechiata from Tg.AC mouse bioassays separately tests for differ-

anisms of carcinogenesis, and in recent years transgenic masiseées between each experimental group and the control group
models have been developed that can potentially discrimingjgh respect to: (1) percent animals with tumors; (2) average
between carcinogens and noncarcinogens (Eastin, 1998; Sgakncy time to appearance of the first skin tumor; (3) average
dingetal.,1999; Tennantt al.,1998; Yamamotet al.,1998). number of tumors per animal at risk; (4) average number of
The Center for Drug Evaluation and Research of the FDA hagmors per tumor-bearing animal; and (5) average latency to
recently approved the use of transgenic animal models development of maximal number of tumors observed (Tennant
screening for drug-induced carcinogenicity, and transgenic afi-al., 1998).

imals have become widely used in drug evaluation. There is arhere are several limitations to this approach. First, the five
great deal of interest in developing methods for rapid carcimeasures are closely related and it is unlikely that a chemical
ogen identification, since thousands of new drugs and chemis one effect and not others. Repeated testing drives the

s o experiment-wise false positive rate above 0.05, and it is nec-
To whom correspondence should be addressed at Biostatistics Branch

National Institute of Environmental Health Sciences, PO Box 12233, MssSary to correct for mUItlple comparisons. A more powerful

A3-03, Research Triangle Park, NC 27709. Fax: (919) 541-4311. E-ma#Pproach Would.compare groups with reSPG'Ct.t(.) fewer mea-
dunson1@niehs.nih.gov. sures (perhaps just tumor latency and multiplicity). Second,

293



294 DUNSON ET AL.

animals that die early are not as likely to develop papillomas among individual animals, generalized estimating equations
to achieve a maximum. Thus, tests based on the above mesa potentially be used for model fitting (see, for example,
sures can be extremely sensitive to group-specific differendgsrnettet al., 1995). However, this approach relies heavily on
in animal survival. Third, there is often interest not only ifarge sample approximations that may not be appropriate in
testing for differences between groups but also in characterizy.AC studies, which typically have a low spontaneous tumor
ing the response at different exposure levels. Current methadsidence and a small to moderate sample size.
for dose-response estimation in carcinogenicity bioassays arén this paper, we describe an alternative approach for the
based on the proportion of animals with one or more tumorstatistical analysis of skin papilloma data from a Tg.AC bio-
and do not account for the actual number of tumors. Clearlyssay. We characterize the effect of exposure on the papilloma
new methods are needed to better characterize exposure effeatponse using a mixed-effects Poisson transition model. Our
in Tg.AC bioassays. model is a type of generalized linear mixed model (GLMM),

Kokoskaet al. (1993) proposed an approach for the statisnd the reader is referred to Zeger and Karim (1991) and
tical analysis of tumor multiplicity data from initiation/promo-Breslow and Clayton (1993) for technical details related to
tion experiments. Under their approach, the number of induc&LMMs. In recent years, GLMMs have become widely used
tumors and the individual tumor appearance times are assigf@danalyzing correlated and overdispersed data (see, for ex-
parametric distributions, and inference is based on the meanple, Funget al.,1998; Piepho, 1999). Under our model, the
number of tumors per group and the mean time to tumorcrease in the papilloma burden from one week to the next has
appearance. The Kokosks al. model requires data on thea Poisson sampling distribution. During a latency period prior
individual tumor onset times. To obtain such data, the paptb the appearance of any papillomas, the Poisson mean is
lomas need to be individually monitored to determine for ea@ssumed to depend on a mouse-specific susceptibility variable,
study week the number of papillomas that appear for the filmt duration of exposure, and on dose through a log-linear
time in that week. Even when substantial time and effort imodel. After appearance of the first skin tumor, there is a shift
invested in monitoring the individual tumors, the onset timda the Poisson mean, and the subsequent rate of increase in the
are subject to substantial measurement error, particularly wheapilloma burden is assumed to depend on dose through a
the tumor burden is moderate to large. For this reason, indecond log-linear model. The proposed statistical model can be
vidual tumor data are typically not collected in Tg.AC bioasdsed for testing of exposure effects on papilloma incidence,
says. An additional drawback of the Kokosktal. model is latency and multiplicity, or for dose-response estimation. Anal-
that it does not account for dependency between the appgaes can be implemented easily within standard statistical
ance times for multiple tumors on the same animal, or f@ackages, such as SAS. We illustrate the methods through
variability between animals in the propensity to develop twapplication to a National Toxicology Program (NTP) study of
mors. In Tg.AC bioassays, the appearance times for multipf€DD (van Birgelenet al., 1999).
papillomas on the same mouse tend to be highly correlated and
the papilloma response can vary substantially between mice,
possibly due to heterogeneity in expression of the transgene. MATERIALS AND METHODS

In previous work, we developed flexible statistical models
for skin papilloma data (Dunson, 2000; Dunson and HasemanModeling skin tumor counts. In a Tg.AC mouse bioassay, each animal is

. . .. randomly assigned to a dose group and is exposed throughout the 26 week
1999). These models characterize the change in the papillofaion of the study. Skin papillomas on the back of each animal are counted

burden at e_aCh observation time using underlying Vari?bles .tlaﬁée per week for 26 weeks or until the animal dies. Natural deaths tend to be
relate to different features of the tumor response, includimgre due to the short duration of the study. However, there may be treatment-
latency, susceptibility, multiplicity, and regression. Such anduced mortality in the higher dose groups for some test chemicals. Animals
approach is extremely useful in characterizing differences tfﬁ;\t appear to be suffering, either due to toxicity or to a high tumor burden, are

.. . . sometimes sacrificed for humane reasons prior to completing the study.
mechanistic studies and, unlike the Kokosiaal. approach, Let Z; be the number of detectable papillomas on the back of mbase

the models account for both dependency in the tumor appeggekj. on a given animal, the change in the tumor burden from one week to
ance times and variability between animals. However, due tt@ next equals the number of new papillomas that appear minus the number
the complexity of the models, special software is needed atrld papillomas that regress. Thus, if papillomas are not individually tracked,
implement the analysis and it can be difficult to reliably estlve cannot determine with certainty the number of new skin tumors that appear
. Lo . In a given week. Data typically consist of weekly counts of the number of
mate a}ll 'the parameters when the papilloma incidence is 10Y. taple tumors for each mouse, since tracking of individual tumors can be
Statistical methods have also been proposed based on a §Ruit when the papilloma burden is high. Therefore, we assume that the
stage clonal expansion model of carcinogenesis, in whigfdividual tumor onset times are unknown, and we model the rate of increase
initiated cells multiply and regress via a stochastic birth ariejthe papilloma burden. . .
death process (Dewarst al., 1999). Such models are appeal- L6t Mi = max{Zy, ..., Z;;;} be the maximum papilloma burden ob

. L L . . served for mouse prior to weekj, and letY; = M., — M; be the increase
ing, but have had limited application in testing for carciNogen| e maximum papilloma burden for mousbetween week — 1 and week

eﬁ?CtSa. due to the complexity of the |i_ke_|ih09d- To simplify;. we assume that the random variaflghas a Poisson sampling distribution
estimation and to accommodate variation in the responsi the following mean:
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wij = E(Yij|Mijv b;, t;, d) acceptable levels of human exposure. In conventional studies, where tumor
multiplicity is rare at most sites, estimates of dose-response are typically based
expB; + (b + y)tdi} if My =0, on the proportion of animals with tumors.
- (eXF(Bz + v,d) if Mij > 0, 1) In Tg.AC bioassays, the cumulative proportion of mice with detectable

papillomas can be estimated for each study week. Under Model 1, the prob-
ability that a mouse develops papillomas by weef the study varies with

whereb; is a mouse-specific susceptibility variabies= j/T, T is the duration dose and between animals according to the model:

of the study,d; is the dose level for mouseon the log scalep,, B, are
intercept parameters related to the rate of appearance of spontaneous papillo-
mas, andy,, vy, are slope parameters associated with exposure. The mouse-
specific variableb; is assumed to have a normal sampling distribution with

j
P; =1~ [] PrY, = 0[My =0, b, t, d)

mean zero and varianc#. k=1
The first expression in Model 1 relates to tumor onset, and involves three
parametersg,, y;, anda®. In a control animal having no tumors, ef@j can i
be regarded as the rate of appearance of the first papilloma. In a given week, =1-—exgd -, expB; + (b + y)tdi}]. (2)
the probability that a control animal having no tumors develops it's first k=1

papilloma is 1— exp{—exp(B,)}. Typically B, < 0, since the spontaneous

tumor incidence is low during a 26 week study. The probability of detecting the

first skin tumor increases with increased time of exposure and dose of a ) ) o

carcinogen. The expressiob, (+ y.)t;d; models this process. For example, if SUPPOse thal, is the number of observations for mousgrior to death. The

y, = 0, then the dose of the chemical does not affect the probability of &fobability that mousé develops papillomas during the studyRs;. Mice
animal developing its initial papilloma during the study. Alternatively, a largdYing Prior to terminal sacrifice will have less opportunity to develop papil-
value fory, implies that the exposed mice develop papillomas more rapidly, §#Mas than mice that survive the duration of the study. Model 2 accounts for
equivalently, a higher proportion of exposed mice develop papillomas durmsnablllty between mice in survival and in sensitivity to exposure. The
the study. The mouse-specific variableaccounts for possible heterogeneity®XPected proportion of animals with papillomas can be estimated for any given
in response among mice. For exampié,= 0 would imply that all animals Study week by integrating the mouse-specific probabilRy, across the
have the same underlying probability of developing papillomas during tQlistribution of the susceptibility variable;. This can be done easily using
course of the study given equivalent survival. Alternativet§,> 0 implies numerical integration (Shampinet al., 1997), and an S-PLUS program is
that mice have different susceptibilities to the development of papillomz@ailable at our website (dir.niehs.nih.gov/dirlecm/transgen/tgac.html).

Highly susceptible mice will tend to develop more papillomas and develop Since Tg.AC mice commonly develop multiple papillomas in response to
them earlier than less susceptible mice. exposure to a chemical carcinogen, it may be of interest to estimate the effect
The second expression in Model 1 relates to tumor multiplicity, and involv&§ dose not only on the proportion of mice with papillomas but also on the
two parametersB, and y,. Once a tumor has appeared, the development 8f€an papilloma burden. Under model (1), the expected maximum papilloma

additional tumors in a given animal may proceed at a different rate than thdrden achieved for mouseby weekj is:
development of the initial tumor. The term egp) can be regarded as the
spontaneous rate of development of additional papillomas in a control mouse j
that already has at least one papilloma. The paranggteray or may not equal
B:. The parametet, represents the effect of dose on papilloma multiplicity.E{E Yik} = Z {E(Yik“\/lik =0, bty di)(l o Pi,k*l)
For example, ify, = 0, then the dose of the test chemical does not affect the k=1 k=1
probability of developing additional papillomas during the study, once an
initial tumor has occurred.

Model 1 follows a simple form that tends to provide a good fit to papilloma
data from the few Tg.AC bioassays that we have examined to this point. Aa average across animals can be calculated for any given study week by
more data become available, it may be necessary to refine the model ointegrating the mouse-specific papilloma burden across the distribution of the
include additional parameters to more accurately represent the underlyigceptibility variablés,. An S-PLUS program to implement this calculation is
process that generated the data. For example, the rate of developmeniw@iilable at our website.
papillomas may depend on the body weight of the mouse, on the current tUmOgiying the model. Model 1 is in the form of a Markov generalized linear

burden, or on the age of the mouse. Several studies have demonstrattﬁqi)éd model, and the SAS procedure NLMIXED can be used to obtain
ppsitive correlation between body weight and tumor incidence for some tisStitﬁ‘proximate maximum likelihood estimates of the parameters. The NLMIXED
sites (Hasemaet al., 1997; Turturrcet al., 1993), and in some cases it may beé,ceqyre uses adaptive Gaussian quadrature, which has been found to be one
”ec,essar_y to adjust for body weight within Model 1 to avoid ?'ases caused a‘ythe most reliable methods of estimation for nonlinear mixed effects models
weight differences across dose groups. Also, as the papilloma burden (Binheiro and Bates, 1995). An example SAS program that uses the NL-

creases, the rate of developing new tumors may be slowed (and existing tUM@IREp procedure to analyze Tg.AC mouse papilloma data can be found at our
may fuse) due to limited space on the animal and/or the inability to providg,pite (dir.niehs.nih.gov/dirlecm/transgen/tgac.html). Alternatively, Model 1
sufficient nutrients for new tumors to grow and develop. To account for SUEBn be fit using the SAS macro GLIMMIX (Wolfinger, 1993), which uses
an effect, we could incorporatefiaM; term in the second expression of Model o ajized quasilikelihood for parameter estimation (Breslow and Clayton,
1. However, in our experience, this term does not appreciably improve the1f§93).
of the model unless the papilloma burden is extremely high. IncludBgage  Another possibility is to follow a Bayesian approach to inference (Carlin and
term to account for an increase in the |nC|der?ce of spontaneous tumors VY_IH’E”S, 1996; Gelmaet al., 1996). In Bayesian models, prior uncertainty in the
age also tends to have little effect on model fit. parameters is quantified through the use of prior probability distributions.
Dose-response modeling.In carcinogenicity bioassays, there is interestnference is based on the posterior distribution of the parameters conditional on
not only in identifying carcinogens, but also in characterizing the magnitude tfe prior and on the data from the current study. In recent years, Bayesian
the tumor response as a function of dose. Estimates of dose-response are uapfubaches have become widely used (Malakoff, 1999), due in part to the
in comparing compounds, in quantifying risk, and in setting guidelines fability to incorporate prior information from previous studies (see, for exam-

j

+ E(Yy/My >0, by, ti, d) P4}
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ple, Dempsteet al.,1983; Dunson and Dinse, 2000; Ibrahétal.,1998). The respectively. Strictly positive intervals are suggestive of increasing dose-
Gibbs sampler (Gelfand and Smith, 1990) can be used to fit Model 1 withiasponse trends.
BUGS, a freely available software package for Bayesian inference Using| arge papilloma responses.Quantification of the papilloma response can
Gibbs Sampling (Bestt al., 1996, www.mrc-bru.cam.ac.uk/bugs). An exam+e difficult for animals with a high tumor burden. As the number of papillomas
ple program is available at our website, and methods for choosing prgh an animal becomes large, it becomes difficult to accurately distinguish
distributions based on historical control data are described in Appendix A.individual tumors and papillomas frequently coalesce and continue to grow as
Although the BUGS software is not as widely used or as familiar as SAg,single mass. In such cases, the papilloma count is clearly not the best way to
the Bayesian approach has several advantages over maximum likelihgegntify the response. A better measure of effect may be the volume occupied
estimation in this setting. First, Bayesian point and interval estimates & the skin tumors. However, this volume can be extremely difficult to
appropriate regardless of the sample size, while maximum likelihood estimagagimate accurately for live animals.
rely on large sample approximations. Second, information from previoussince the spontaneous papilloma incidence is low in Tg.AC mice, a high
studies can be included in a Bayesian analysis through the prior distributiofifmor burden typically occurs only with exposure to a clear chemical carcin-
as we illustrate in Appendix A. When the tumor incidence is low, as is the caggen, such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or benzene. We
in Tg.AC mouse bioassays, information from historical studies can improygcommend discontinuing weekly clinical observations of the papilloma bur-
the sensitivity of statistical tests (Haseman, Huff, and Boorman, 1984). Als§en on a mouse once the count for that mouse exceeds a threshold of 20
it may be difficult to obtain maximum likelihood estimates when few animalgimors. In our experience, papillomas can be counted with reasonable accuracy
get any tumors in a study. Bayesian analyses that incorporate prior informatig{yi papillomas rarely coalesce when the tumor burden is below this threshold.
are not subject to this estimability problem. Third, it is trivial to fit an extendegiice dying or exceeding the threshold prior to the last observation time will
version of Model 1 in BUGS that accommodates extra-variability relative tontribute fewer observations to the analysis than mice that complete the study
the Poisson distribution. Such variability may occur in Tg.AC studies, but cgfith a small to moderate papilloma burden. Due to the likelihood-based
be difficult to account for within current software for maximum likelihoodstructure of Model 1, the missing observations are ignorable and can be
estimation. The Bayesian approach has been used previously to analyze dagiuded from consideration in the analysis (Laird, 1988).
from conventional tumorigenicity studies (Dunson and Dinse, 2000).

Statistical tests. Using Model 1, the response to a given chemical can bexample: TCDD Study

assessed based on papilloma incidence, latency, and multiplicity. If there is n%ata from a National Toxicology Program study of the effect of TCDD

effect of exposure on the incidence of papillomas then= vy, = 0O; that is, ) . )
. ) osure on papilloma development are used to illustrate the proposed statis-
dose has no effect on the rate of appearance of new papillomas prior to or after . . .
) . . cal methodology (van Birgeleet al.,1999). In this study, female hemizygous
the appearance of the first papilloma. If there is no effect of exposure on the

latency time from the start of the study to the appearance of the first pa| iIIomg'AC mice were housed individually and were randomly assigned to treat-
Y . y PP . papit meént groups. Groups of 20 mice received 0, 5, 17, 36, 76, 121, 166, 355, or 760
then vy, = 0. If there is no effect of exposure on papilloma multiplicity,

adjusting for animal-to-animal differences in the latency time, tiper= 0. ng/kg of TCDD topically in acetone three times a week for 26 weeks. On a

. L .. weekly basis, the number of skin papillomas were recorded for each animal.
Thus, the null hypotheses corresponding to incidence, latency, and multipli ¥) TCDD-induced alterations in body weight gain or mortality were observed.
are

However, 38 of the 180 mice died prior to completing the study. This survival
rate is similar to the 85% average survival rate that has been reported for
How: v1=v2=0, Hpy v, =0, andHgs: v, =0, vehicle control Tg.AC mice in 26 week studies (Eastinal., 1998). Early
death could not be attributed to any one cause, including the occurrence of
odontogenic tumors, which have been observed to cause early mortality in
respectively. Tg.AC mice. The large number of dose groups in this study facilitates evalu-

Within the maximum likelihood approach, we first tdst, to assess an ation of the statistical model.
overall dose-response trend in papilloma incidence. This can be done byt Kaplan and Meier (1958) estimate of the cumulative proportion of mice
rejecting Ho, if 2{L — L(Ho)} = x3(0.05) = 6, wherelL is the log with papillomas is plotted in Figure 1 for each study week and dose group.
likelihood under Model 1 anti(H,,) is the log likelihood under Model 1 with Animals dying prior to terminal sacrifice are not fully at risk of developing skin
vi = v, = 0. If we fail to rejectH,, we conclude there is no evidence of atumors, and the Kaplan-Meier approach adjusts the proportions for animal
dose-response trend in papilloma incidence. However, if we réjgctthen  Survival. Figure 1 shows a clear dose-dependent decrease in papilloma latency.
we would like to know whether the trend is due to a shortening of the latendf® survival-adjusted average maximum papilloma burden is plotted in Figure
time and/or to an increase in papilloma multiplicityzif = 7./se@,) > 1.64, 2 for each dose group and study week. Animals that die early have less
we rejectH,, and conclude that there is a significant decrease in papillon@@Portunity to develop papillomas. To account for animal survival, we esti-
latency with increasing dose. #, = 9,/se@,) > 1.64, we rejectHy; and mated the average increase in the maximum papilloma burden at each week
conclude that there is a significant increase in papilloma multiplicity witRMong surviving animals, and we summed these averages to estimate the
increasing dose. All of the information required to conduct these tests is givd¥frage maximum papilloma burden at each week. Figure 2 shows a dose-
in the SAS output. dependent increase in the maximum papilloma burden.

Within the Bayesian approach, samples will be available from the joint We first fit Model 1 to the TCDD data using NLMIXED in SAS. The
distribution of the parameters conditional on the papilloma data from t@Proximate maximum likelihood estimates of the parameters are shown in
current study and on the prior, which can potentially be chosen based Tple 1, along with standard errors and confidence intervals. The SAS program
historical control data as described in Appendix A. We conclude that thereth@t was used to obtain these estimates is available at our web site (dir.niehs.
evidence of an increasing dose-response trend in incidence if nih.gov/dirlecm/transgen/tgac.html), and researchers can easily modify this

program to analyze their own data sets.

. The estimated probability that a vehicle control animal gets one or more
Y < papillomas during the course of the study is very small {lexp{—26
Privi/sdy.) + v/sdy,) > 0} = 0.95, exp(B.)} = 2.3e — 7), which is not surprising since no papillomas were
detected in the vehicle control group. The estimated spontaneous rate of
where this test statistic can be estimated based on a large number of Mateeeloping additional papillomas in a control mouse that already has at least
Carlo samples ofy, and vy,. Increasing dose-response trends in latency amshe papilloma is also small (expg) = 0.029) as is the expected maximum
multiplicity can be assessed by examining 95% intervals forand y,,  papilloma burden in a control mouse surviving the duration of the study:
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© T T T T TCDD. A Kaplan-Meier approach is
0 5 10 15 20 25 used to adjust estimates for animals
dying early prior to developing any
Weeks on study <kin tUmors.
26 software. We specified non-informative priors for the parameters, in order for

the results to be comparable to the results from NLMIXED. However, an
informative prior could be chosen as described in Appendix A based on the
spontaneous papilloma response observed in previous studies of individually
~ _ housed Tg.AC mice (e.g., Mahlet al., 1998). Data from studies with group
N eXp{(l N k)exmﬁl)}]) =3.le-7. housed animals should not be used to choose the prior, since wounds caused
by fighting between cage mates can cause papilloma development in Tg.AC
Estimation of these values relies on extrapolation downwards from the valygie (Tennanet al., 1998). The posterior means, standard errors, and confi-
in the dosed groups. Historical control data could potentially be included, @&énce limits from the Bayesian analysis are shown in Table 2, and the BUGS
described in Appendix A, to improve the reliability of these estimates.  program that was used to obtain these estimates is available at our web site.
It also appears that there is a strong dose-response trend in papilloth@ posterior means from the Bayesian analysis are very similar to the
incidence, latency, and multiplicity. The p-value from a likelihood ratio test fofpproximate maximum likelihood estimates from NLMIXED.
a trend in incidence i® < 0.001, andmaximum likelihood based tests for  Since TCDD clearly affects papilloma incidence, latency and multiplicity,
trends in latency and multiplicity are also highly significaRt< 0.001). The the primary objective of analyzing this particular dataset is to assess the fit of
estimated probability of getting at least one papilloma during 26 weeks @fe proposed model to the data. Based on Model 1, we estimated the expected
treatment with 5 ng/kg of TCDD for an animal with average susceptibility troportion of animals with papillomas for each dose group and study week by
TCDD (b; = 0) is plugging the parameter estimates from Table 2 into Model 2, and integrating
across the distribution of the mouse-specific susceptibility varibpleising
26 the S-PLUS program available at our website. The resulting estimates are
~ n plotted in Figure 3. The model-based estimates in Figure 3 approximate the
1- exp{— 2 exp(Bl + 'Yltk)} = 0.0006. Kaplan-Meier estimates in Figure 1 for each study week. Based on Model 1,
k=1 we also estimated the expected maximum papilloma burden for each dose
group and study week. The resulting estimates are plotted in Figure 4. The
This probability increases to close to one for animals with average susceptiodel-based estimates in Figure 4 approximate the empirical estimates in
bility that are treated with at least 36 ng/kg of TCDD. Less susceptible animdligure 2 for each study week.
(b; < 0) will have a lower risk of developing papillomas. For example, an
animal with susceptibility in the 10th percentile; (= —12.06),based on the
estimated level of animal-to-animal variabilit§{ = 88.62), has only a 0.017
probability of developing papillomas in the 36 ng/kg group. Thus, it appears

that th_ere is high an|ma|—to-ar1|ma| variability in sensmv!ty Fo TCDD, t_h_o_ugh Due to recent advances in molecular biology and pharma-
an animal would have to be in the lower 2.7th percentile in susceptibility to | th te of d | t of d h . d
have lower than a 95% risk of developing papillomas with 26 weeks ogy, ) €rate o eYe opment o ne\_N rugs has Increase
exposure to 760 ng/kg of TCDD. substantially. Conventional rodent studies for evaluating drug
We also fit Model 1 using a Bayesian approach implemented with the BUGRfety are expensive and timing consuming, and are limited in

> (exp(Bl)exp{(l - k)eXF(Bl)} + eXp(Bz)[l

k=1

DISCUSSION
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justed for animal survival.

their relevance to human populations. Fortunately, biologictde structure of the model, it is straightforward to incorporate
advances have also led to the development of transgenic adeditional factors to account for body weight, age of the
mals that have been shown to result in a carcinogenic respomaeuse, and overdispersion relative to the Poisson distribution.
These animal models have been approved by the U.S. FDA folOur goal was to develop a method for routine analysis of
use in evaluating drug safety. Transgenic mouse bioassays rakin papilloma data from Tg.AC studies. Since the incidence of
soon be widely used for rapid carcinogen identification and risfpontaneous papillomas is very low, a compound that has a
assessment. In order for the results from these studies towssak carcinogenic effect may induce only a few papillomas in
properly interpreted, there is a critical need for the develop-Tg.AC bioassay. Therefore, we have used a simple statistical
ment of new statistical methods. model that can be fit even if no papillomas are detected for the
We have proposed a new approach for the analysis of skiontrol animals and only a few are detected for the exposed
papilloma data from Tg.AC studies. A Poisson mixture modehimals. The model provided an excellent fit to data from a
is used to describe the effect of exposure on the rate of incredgeAC study of TCDD, based on examination of plots of the
in the maximum papilloma burden. The model accommodatelserved and predicted proportion of mice with papillomas and
distinct effects on papilloma latency and multiplicity, as wellhe average maximum papilloma burden at each study week.
as variability between mice in sensitivity to exposure. Due M/e used the predictive log-likelihood approach of Dempster
(1974), as described in Karim and Zeger (1992), to further

TABLE 1
Results of Modeling Increases in Papilloma Response TABLE 2
Using NLMIXED Results of Modeling Increases in Papilloma Response
Using BUGS

95% Confidence

Parameter MLE Standard error interval Parameter Posterior mean Standard error 95% Credible interval
B —18.56 1.98 £22.47,—14.66) B —18.50 1.98 £23.40,—-15.49)
B2 —3.534 0.328 {4.180,—2.888) B2 —3.578 0.325 {£4.225,—2.965)
Y1 37.08 4.35 (28.50, 45.65) Y1 36.85 4.27 (30.49, 47.16)
Y2 3.379 0.367 (2.656, 4.103) Y2 3.437 0.364 (2.750, 4.160)
o’ 88.62 26.90 (35.53, 141.7) 1lo? 0.012 0.003 (0.006, 0.019)

Note.Data from NTP study of TCDD (van Birgeleet al., 1999). Note.Data from NTP study of TCDD (van Birgeleet al., 1999).
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verify the adequacy of the model. We recommend routineddition, we choose normal priors for the paramejfgrsp.,
checking model fit based on plots of the observed and predicted and vy,:

values, and an S-PLUS program for calculating the fitted
values is available at our website. There is need for furthgr N(m ), B, ~ N(m ) ~ N(m )
evaluation of model fit based on data from multiple studies' o1 Yor)» P2 02 Yoz} V1 03 Y03/
involving smaller sample sizes and a variety of test agents. The Y2 ~ N(Mgg, vos), (1)
TCDD study utilized a relatively high number of dose groups

and animals, which made it a good study for model evaluatio

a?d Vo1, Vo Voss Uos @r€ prior variances which are chosen to

Although we have focused on Tg.AC studies, the St"Jlt'St'CF)eflect the uncertainty in this choice. To choose a noninforma-

methods are applicable to other model systems where tumprs, prior, sefag, = 0.001,a,, = 0.001,My, = Mo, = Moy =
. . . . . 1 01 — . 1oz . sitlol — 02 — 03
are detectable in live animals. These include most anm}%l04 = 0 andwvy = v = w0 = ves = 1000. A Bayesian

models of skin and t_)reast cancexq. Boormgnet al, 1999).' analysis that uses non-informative priors often gives similar
Such models are widely used for assessing the tumorlgep(%%ults to a maximum likelihood analysis

potential of test compounds, for exploring mechanisms o While there is typically limited prior information about,

:il\j/rg(;rtt'zgztcésn’ and for identifying agents with chemoprever}ﬂ—ndyz, the parameters representing the effect of dose on tumor

latency and multiplicity, respectively, historical control data
are informative abouB, and g,, the parameters related to the
spontaneous tumor incidence rate prior to and after the appear-
ance of the first papilloma. If weekly papilloma counts are
available for historical control animals, the prior meang

To fit Model 1 using a Bayesian approach, it is necessaryand m,, can be set equal to the estimates for and g,,
specify prior distributions for each of the model parameterespectively, from an analysis of the historical control data.
Following the standard approach (see, for example, @illed., Similarly, the prior variancey,, andv,, can be set equal to the
1993), we assign a gamma,f, a,,) prior for 1/o°, where estimated variance from such an analysis. This approach is
ag/ag, is the prior mean and,,/aj, is the prior variance. In referred to as coherent Bayesian updating, and is a standard

APPENDIX A

Choosing the Prior Parameters for the Bayesian Analysis
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method in Bayesian analysis (see, for example, Geleta., whereM, = (Z, + 0.5)/(N, + 0.5), Z, is the total number
1996). of papillomas in the vehicle control mice in the historical
If weekly papilloma counts are not available for the historstudies, andS, ; = exp{—X_1 exp(my)}. Under the as

ical studies, we can choose,;, My, vy, ve; based on sumption thatB, is constant from study to study, we can

summary statistics. In this case, we let choose the prior variance by letting
Mo, = log{ —log(1 — Py)/T}, @3] T
R w02 = eXp2po){ 2 (1 — S1)}?Y,, (5)
whereP, = (X, + 0.5)/(N, + 0.5), X, is the number of k=1

vehicle control animals with papillomas in previous studies,

is the total number of vehicle control animals in the historicalhere V, is the estimated between animal variability in the
database, and is the study durationT = 26 for 26 week maximum papilloma burden for vehicle control animals in the
studies). We include 0.5 as a correction factor for low inchistorical studies. To allow for a reasonable degree of study-
dence. Under the assumption tifatis constant from study to to-study variability, one can multiply,, by a factor of 10.
study, we can choose the prior variance by letting

A A APPENDIX B
Po(l - Po)
Y017 NomZ, Texp(2myy) * ) Choosing Initial Values for the Maximum Likelihood
Analysis

where this expression is derived using the delta method (Mor-1¢ fjt Model 1 using either the Bayesian or the maximum
gan, 1992). To allow for a reasonable degree of study-to-stughelihood approach, it is necessary to choose initial values for
variability, one can multiplys,, by a factor of 10. We choose the parameters. While the Bayesian approach is not sensitive to

Mo by solving the following equation: the initial values, current maximum likelihood programs may
fail to converge if the initial values are unreasonable. To
T choose initial values foB,, B,, v1, andy,, we can modify the

Mo = > {exp(Mo)Sc: + expmyo) (1 — Sc_,)}, (4) procedure described in Appendix A for choosing the prior
k=1 parametersn,, andmy,:
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1. For each dose group, choasg, andm,,, as described in  transgenic mice as predictive models for identifying carcinog&nsiron.
the final paragraph of Appendix A, using the data from the Health Persp106,81-84.
current study instead of the historical controls. Eastin, W. C., Haseman, J. K., Mahler, J. F., and Bucher, J. R. (1998). The

s National Toxicology Program evaluation of genetically altered mice as
2. Let the initial values foﬁl and V1 be the least squares predictive models for identifying carcinogengoxicol. Pathol.26, 461—

estimates of the intercept and slope, respectively, for the simplg5.
“ne_ar model withmo, (SeleCted In step 1? as the depenqe%ng, K. Y., Lin, X., and Krewski, D. (1998). Use of generalized linear mixed
variable and one half the log dose as the independent variablenodels in analyzing mutant frequency data from the transgenic mouse assay.

3. Let the initial values foB, andy, be the least squares Environ. Mol. Mutagen31, 48-54.
estimates of the intercept and slope, respectively, for the simplgfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches to
linear model withm,, (selected in step 1) as the dependentcalculating marginal densitiedournal of the American Statistical Associ-

variable and the log dose as the independent variable. ation 85, 398-409.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (198@)esian Data
In addition, we set the initial value for &7 to 0.1. Analysis.Chapman & Hall, London.
Gilks, W. R., Wang, C. C., Yvonnet, B., and Coursaget, P. (1993). Random-

effects models, for longitudinal data using gibbs samplBigmetrics49,
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